Wed Apr 19, 2017
SCORE: 27/30 POINTS

1. No calculators / notes / unauthorized paper, electronics or communication allowed
2. Simplify all answers unless stated otherwise
3. Show proper calculus level work to justify your answers

A person's velocity (in meters per second) at time t (in seconds) is given by $v(t)=\left\{\begin{array}{cc}20+t, & 0 \leq t \leq 2 \\ 26-2 t, & 2 \leq t \leq 12\end{array}\right.$. SCORE: $\frac{3 \frac{1}{2}}{15 \text { PTS }}$
a] Find the exact distance the person travelled from time $t=0$ seconds to $t=12$ seconds.
NOTE: You must show the arithmetic expression that you used to get your answer.

b] Estimate the distance the person travelled from time $t=0$ seconds to $t=12$ seconds using three subintervals and left endpoints. NOTE: You must show the arithmetic expression that you used to get your answer.

$$
\frac{12-0}{3}=4=\Delta t
$$

$$
4[v(0)+v(4)+v(8)]
$$

he graph of function f is shown on the right.
he graph consists of a diagonal line, an arc of a circle, then two additional diagonal lines.
] Evaluate $\int_{-10}^{10} f(x) d x$.
NOTE: You must show the arithmetic expression that you used to get your answer.

$$
\begin{aligned}
& -\left[\frac{1}{2}(2)(10)\right]-\left(\frac{1}{2} \cdot \pi 2^{2}\right)+\frac{1}{2}(4)(8)+\frac{1}{2}(8+4) 6\left(\frac{1}{2}\right) \\
& \left(\frac{1}{2}\right)-10-2 \pi+16+36 \\
& 42-2 \pi \\
& \text { 1 Evaluate } \int_{10}^{-4} f(x) d x=-\int_{-4}^{10} f(x) d x \\
& -\left[-\frac{1}{4} \pi 2^{2}+16+36\right] \\
& -[-\pi+52]=\pi-52
\end{aligned}
$$

Using the limit definition of the definite integral, and right endpoints, find $\int_{-4}^{-1}\left(2 x^{2}+8 x\right) d x$.
NOTE: Solutions using any other method will earn 0 points.

$$
\begin{aligned}
& x_{i}=a+i \Delta x \\
& \Delta x=\frac{-1-(-4)}{n}=\frac{3}{n} \\
& \left(\frac{3 i}{n}-4\right)\left(\frac{3 n}{n}-4\right) \\
& \frac{q_{i}{ }^{2}}{22^{2}}-2 \frac{2 i}{n}+16 \\
& \left(n^{2}+n\right)(2 n+1) \\
& \lim _{n \rightarrow \infty} \sum_{i, 9}^{n}\left(2 x_{i}^{2}+8 x_{i}\right) \Delta x \\
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[2\left(-4+\frac{3 i}{n}\right)^{2}+8\left(-4+\frac{3 i}{n}\right)\right] \frac{3}{n}(1) \\
& 2 n^{3}+n^{2}+2 n^{2}+n \\
& n^{3}\left(2+\frac{3}{n}+\frac{1}{n^{2}}\right) \\
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \cdot\left[2\left(16-\frac{12 i}{n}-\frac{12 i}{n}+\frac{9 i^{2}}{n^{2}}\right)+\left(-32+\frac{24 i}{n}\right)\right] \frac{3}{n} \\
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[3 x-\frac{48 i}{n}+\frac{18 i^{2}}{n^{2}}-3 x+\frac{24 i}{n}\right] \frac{3}{n} \\
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{\left.-\frac{24 i}{n}+\frac{18 i^{2}}{n^{2}}\right)^{\frac{3}{n}}}{5}\right. \\
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n}-\frac{72 i}{n^{2}}+\frac{54 i^{2}}{n^{3}} \\
& + \text { (1) } \lim _{n \rightarrow \infty} \\
& \lim _{n \rightarrow \infty}-\frac{72}{n^{2}} \sum_{i=1} i+\lim _{n \rightarrow \infty} \frac{54}{n^{3}} \sum_{i=1}^{n} i^{2} \\
& \lim _{n \rightarrow \infty} \frac{54}{x^{2}} \cdot \frac{R^{3}\left(x+\frac{3}{n}+\frac{1}{n^{2}}\right)}{\phi_{3}} \\
& -36+18=-18 \text { (1) }
\end{aligned}
$$

Evaluate $\int_{-6}^{0}\left(2 \sqrt{36-x^{2}}-|x+2|\right) d x$ using the properties of definite integrals and interpreting in terms of area. SCORE: 515 PTS
NOTE: You must show the proper use of the properties of the definite integral, NOT just the arithmetic.

$$
\frac{2 \int_{-6}^{0} \sqrt{36-x^{2}} d x-\int_{-6}^{0}|x+2| d x}{2(9 \pi)-10} \frac{18 \pi-10}{2}
$$

$$
y^{2}+x^{2}=36
$$

$$
\begin{equation*}
\text { (1) } \frac{\frac{1}{4} \pi 6^{2}}{\frac{1}{4} \cdot 36 \pi}+\frac{\frac{1}{2}(4)(4)+\frac{1}{2}(2)(2)}{8+2}(1) \tag{1}
\end{equation*}
$$

